后一頁 前一頁 回目錄 |
《開元大衍歷》演紀上元閼逢困敦之歲,距開元十二年甲子,積九千六百九十六万一千七百四十算。 ○一曰步中朔術 通法三千四十。 策實百一十一万三百四十三。 揲法八万九千七百七十三。 減法九万一千二百。 策余万五千九百四十三。 用差万七千一百二十四。 挂限八万七千一十八。 三元之策十五,余六百六十四,秒七。 四象之策二十九,余千六百一十三。 中盈分千三百二十八,秒十四。 朔虛分千四百二十七。 爻數六十。 象統二十四。 以策實乘積算,曰中積分。盈通法得一,為積日。爻數去之,余起甲子算外,得天正中气。凡分為小余,日為大余。加三元之策,得次气。凡率相因加者,下有余秒,皆以類相從。而滿法迭進,用加上位。日盈爻數去之。 以揲法去中積分,不盡曰歸余之挂。以減中積分,為朔積分。如通法為日,去命如前,得天正經朔。加一象之日七、余千一百六十三少,得上弦。倍之,得望。參之,得下弦。四之,是謂一揲,得后月朔。凡四分,一為少,三為太。綜中盈、朔虛分,累益歸余之挂,每其月閏衰。凡歸余之挂五万六千七百六十以上,其歲有閏。因考其閏衰,滿挂限以上,其月合置閏。或以進退,皆以定朔無中气裁焉。 凡常气小余不滿通法、如中盈分之半已下者,以象統乘之,內秒分,參而伍之,以減策實;不盡,如策余為日。命常气初日算外,得沒日。凡經朔小余不滿朔虛分者,以小余減通法,余倍參伍乘之,用減滅法;不盡,如朔虛分為日。命經朔初日算外,得滅日。 ○二曰發斂術 天中之策五,余二百二十一,秒三十一;秒法七十二。 地中之策六,余二百六十五,秒八十六;秒法百二十。 貞悔之策三,余百三十二,秒百三。 辰法七百六十。 刻法三百四。 各因中節命之,得初候。加天中之策,得次候。又加,得末候。因中气命之,得公卦用事。以地中之策累加之,得次卦,若以貞悔之策加侯卦,得十有二節之初外卦用事。因四立命之,得春木、夏火、秋金、冬水用事。以貞悔之策減季月中气,得土王用事。凡相加減而秒母不齊,當令母互乘子,乃加減之;母相乘為法。 各以能法約其月閏衰,為日,得中气去經朔日算。求卦、候者,各以天、地之策,累加減之。凡發斂加時,各置其小余,以六爻乘之,如辰法而一,為半辰之數。不盡者,三約為分。分滿刻法為刻。若令滿象積為刻者,即置不盡之數,十之,十九而一,為分。命辰起子半算外。 ○三曰步日躔術 干實百一十一万三百七十九太。 周天度三百六十五,虛分七百七十九太。 歲差三十六太。 以盈縮分盈減、縮加三元之策,為定气所有日及余。乃十二乘日,又三其小余,辰法約而一,從之,為定气辰數。不盡,十之,又約為分。以所入气并后气盈縮分,倍六爻乘之,綜兩气辰數除之,為末率。又列二气盈縮分,皆倍六爻乘之,各如辰數而一;以少減多,余為气差。至后以差加末率,分后以差減末率,為初率。倍气差,亦倍六爻乘之,复綜兩气辰數除,為日差。半之,以加減初末,各為定率。以日差至后以減、分后以加气初定率,為每日盈縮分。乃馴積之,隨所入气日加、減气下先、后數,各其日定數。其求朓朒仿此。冬至后為陽复,在盈加之,在縮減之;夏至后為陰复,在縮加之,在盈減之。距四正前一气,在陰陽變革之際,不可相并,皆因前末為初率。以气差至前加之,分前減之,為末率。余依前術,各得所求。其分不滿全數,母又每气不同,當退法除之。以百為母,半已上,收成一。冬至、夏至偕得天地之中,無有盈、縮。余各以气下先后數先減、后加常气小余,滿若不足,進退其日,得定大小余。凡推日月度及軌漏、交蝕,依定气;注歷,依常气。以減經朔、弦、望,各其所入日算。若大余不足減,加爻數,乃減之。減所入定气日算一,各以日差乘而半之;前少以加、前多以減气初定率,以乘其所入定气日算及余秒。凡除者,先以母通全,內子,乃相乘;母相乘除之。所得以損益朓朒積,各其入朓朒定數。若非朔、望有交者,以十二乘所入日算;三其小余,辰法除而從之;以乘損益率,如定气辰數而一。所得以損益朓朒積,各為定數。 南斗二十六,牛八,婺女十二,虛十,虛分七百七十九太。危十七,營室十六,東壁九,奎十六,婁十二,胃十四,昴十一,畢十七,觜觿一,參十,東井三十三,輿鬼三,柳十五,七星七,張十八,翼十八,軫十七,角十二,亢九,氐十五,房五,心五,尾十八,箕十一,為赤道度。其畢、觜觿、參、輿鬼四宿度數,与古不同,依天以儀測定,用為常數。紘帶天中,儀极攸憑,以格黃道。 推冬至歲差所在,每距冬至前后各五度為限,初數十二,每限減一,盡九限,數終于四。當二立之際,一度少強,依平。乃距春分前、秋分后,初限起四,每限增一,盡九限,終于十二,而黃道交复。計春分后、秋分前,亦五度為限。初數十二,盡九限,數終于四。當二立之際,一度少強,依平。乃距夏至前后,初限起四,盡九限,終于十二。皆累裁之,以數乘限度,百二十而一,得度;不滿者,十二除,為分。若以十除,則大分,十二為母,命太、半、少及強、弱。命曰黃、赤道差數。二至前、后各九限,以差減赤道度,二分前、后各九限,以差加赤道度,各為黃道度。 開元十二年,南斗二十三半,牛七半,婺女十一少,虛十,六虛之差十九太。危十七太,營室十七少,東壁九太,奎十七半,婁十二太,胃十四太,昴十一,畢十六少,觜觿一,參九少,東井三十,輿鬼二太,柳十四少,七星六太,張十八太,翼十九少,軫十八太,角十三,亢九半,氐十五太,房五,心四太,尾十七,箕十少,為黃道度,以步日行。日与五星出入,循此。求此宿度,皆有余分,前后輩之成少、半、太,准為全度。若上考往古,下驗將來,當据歲差,每移一度,各依術算,使得當時度分,然后可以步三辰矣。 以乾實去中積分,不盡者,盈通法為度。命起赤道虛九,宿次去之,經虛去分,至不滿宿算外,得冬至加時日度。以三元之策累加之,得次气加時日度。 以度余減通法,余以冬至日躔距度所入限數乘之,為距前分。置距度下黃、赤道差,以通法乘之,減去距前分,余滿百二十除,為定差。不滿者,以象統乘之,复除,為秒分。乃以定差減赤道宿度,得冬至加時黃道日度。 又置歲差,以限數乘之,滿百二十除,為秒分。不盡為小分。以加三元之策,因累裁之。命以黃道宿次,各得定气加時日度。 置其气定小余,副之。以乘其日盈、縮分,滿通法而一,盈加、縮減其副。用減其日加時度余,得其夜半日度。因累加一策,以其日盈、縮分盈加、縮減度余,得每日夜半日度。 ○四曰步月离術 轉終六百七十万一千二百七十九。 轉終日二十七,余千六百八十五,秒七十九。 轉法七十六。 轉秒法八十。 以秒法乘朔積分,盈轉終去之;余复以秒法約,為入轉分;滿通法,為日。命日算外,得天正經朔加時所入。因加轉差日一、余二千九百六十七、秒一,得次朔。以一象之策,循變相加,得弦、望。盈轉終日及余秒者,去之。各以經朔、弦、望小余減之,得其日夜半所入。 各置朔、弦、望所入轉日損益率,并后率而半之,為通率。又二率相減,為率差。前多者,以入余減通法,余乘率差,盈通法得一,并率差而半之;前少者,半入余,乘率差,亦以通法除之:為加時轉率。乃半之,以損益加時所入,余為轉余。其轉余,應益者,減法;應損者,因余。皆以乘率差,盈通法得一,加于通率,轉率乘之,通法約之,以朓減、朒加轉率,為定率。乃以定率損益朓膠袗n,為定數。其后無同率者,亦因前率。應益者,以通率為初數,半率差而減之;應損者,即為通率。其損益入余進退日,分為二日,隨余初末,如法求之,所得并以損益轉率。此術本出《皇极歷》,以究算術之微變。若非朔、望有交者,直以入余乘損益率,如通法而一,以損益朓朒,為定數。 七日、初數二千七百一,末數三百三十九。十四日、初數二千三百六十三,末數六百七十七。二十一日、初數二千二十四,末數千一十六。二十八日,初數千六百八十六,末數千三百五十四。以四象約轉終,均得六日二千七百一分。就全數約為九分日之八。各以減法,余為末數。乃四象馴變相加,各其所當之日初、末數也。視入轉余,如初數已下者,加減損益,因循前率;如初數以上,則反其衰,歸于后率云。 各置朔、弦、望大小余,以入气、入轉朓朒定數,朓減、朒加之,為定朔、弦、望大小余。定朔日名与后朔同者,月大;不同者,小;無中气者,為閏月。凡言夜半,皆起晨前子正之中。若注歷,觀弦、望定小余,不盈晨初余數者,退一日。其望有交、起虧在晨初已前者,亦如之。又月行九道遲疾,則有三大二小以日行盈、縮累增、損之,則容有四大三小,理數然也。若俯循常儀,當察加時早晚,隨其所近而進退之,使不過三大二小。其正月朔有交、加時正見者,消息前后一兩月,以定大小,令虧在晦、二。定朔、弦、望夜半日度,各隨所直日度及余分命之。乃列定朔、弦、望小余,副之。以乘其日盈、縮分,如通法而一,盈加、縮減其副。以加夜半日度,各得加時日度。 凡合朔所交,冬在陰歷、夏在陽歷,月行青道;冬至、夏至后,青道半交在春分之宿,當黃道東。立冬、立夏后,青道半交在立春之宿,當黃道東南。至所沖之宿,亦如之。冬在陽歷、夏在陰歷,月行白道;冬至、夏至后,白道半交在秋分之宿,當黃道西。立冬、立夏后,白道半交在立秋之宿,當黃道西北。至所沖之宿,亦如之。春在陽歷、秋在陰歷,月行硃道;春分、秋分后,硃道半交在夏至之宿,當黃道南。立春、立秋后,硃道半交在立夏之宿,當黃道西南。至所沖之宿,亦如之。春在陰歷,秋在陽歷,月行黑道。春分、秋分后,黑道半交在冬至之宿,當黃道北,立春、立秋后,黑道半交在立冬之宿,當黃道東北。至所沖之宿,亦如之。四序离為八節,至陰陽之所交,皆与黃道相會,故月有九行。各視月交所入七十二候距交初中黃道日度,每五度為限,亦初數十二,每限減一,數終于四、乃一度強,依平。更從四起,每限增一,終于十二,而至半交,其去黃道六度。又自十二,每限減一,數終于四,亦一度強,依平。更從四起,每限增一,終于十二,复与日軌相會。各累計其數,以乘限度,二百四十而一,得度。不滿者,二十四除,為分,若以二十除之,則大分,以十二為母。為月行与黃道差數。距半交前后各九限,以差數為減;距正交前后各九限,以差數為加。此加減出入六度,單与黃道相較之數。若較之赤道,則隨气遷變不常。計去冬至、夏至以來候數,乘黃道所差,十八而一,為月行与赤道差數。凡日以赤道內為陰,外為陽;月以黃道內為陰,外為陽。故月行宿度,入春分交后行陰歷、秋分交后行陽歷,皆為同名。若入春分交后行陽歷、秋分交后行陰歷,皆為异名。其在同名,以差數為加者加之,減者減之;若在异名,以差數為加者減之,減者加之。皆以增損黃道度,為九道定度。 各以中气去經朔日算,加其入交泛,乃以減交終,得平交入中气日算。滿三元之策去之,余得入后節日算。因求次交者,以交終加之,滿三元之策去之,得后平交入气日算。 各以气初先后數先加、后減之,得平交入定气日算。倍六爻乘之,三其小余,辰法除而從之,以乘其气損益率,如定气辰數而一,所得以損益其气朓朒積,為定數。 又置平交所入定气余,加其日夜半入轉余,以乘其日損益率,滿通法而一,以損益其日朓朒積,交率乘之,交數而一,為定數。乃以入气入轉朓朒定數,朓減、朒加平交入气余,滿若不足,進退日算,為正交入定气日算。其入定气余,副之,乘其日盈縮分,滿通法而一,以盈加、縮減其副,以加其日夜半日度,得正交加時黃道日度。以正交加時度余減通法,余以正交之宿距度所入限數乘之,為距前分。置距度下月道与黃道差,以通法乘之,減去距前分,余滿二百四十除,為定差;不滿者一退為秒。以定差及秒加黃道度、余,仍計去冬至、夏至已來候數乘定差,十八而一,所得依名同异而加減之,滿若不足,進退其度,得正交加時月离九道宿度。 各置定朔、弦、望加時日度,從九道循次相加。凡合朔加時,月行潛在日下,与太陽同度,是謂离象。先置朔、弦、望加時黃道日度,以正交加時所在黃道宿度減之,余以加其正交九道宿度,命起正交宿度算外,即朔、弦、望加時所當九道宿度也。其合朔加時,若非正交,則日在黃道,月在九道,各入宿度雖多少不同,考其去极,若應繩准。故云:月行潛在日下,与太陽同度。以一象之度九十一、余九百五十四、秒二十二半為上弦,兌象。倍之,而与日沖,得望,坎象。參之,得下弦,震象。各以加其所當九道宿度,秒盈象統從余,余滿通法從度,得其日加時月度。綜五位成數四十,以約度余,為分;不盡者,因為小分。 視經朔夜半入轉,若定朔大余有進退者,亦加、減轉日。否則因經朔為定。累加一日,得次日,各以夜半入轉余乘列衰,如通法而一,所得以進加、退減其日轉分,為月轉定分。滿轉法,為度。 視定朔、弦、望夜半入轉,各半列衰以減轉分。退者,定余乘衰,以通法除,并衰而半之;進者,半余乘衰,亦以通法除:皆加所減。乃以定余乘之,盈通法得一,以減加時月度,為夜半月度。各以每日轉定分累加之,得次日。若以入轉定分,乘其日夜漏,倍百刻除,為晨分。以減轉定分,余為昏分。望前以昏、望后以晨加夜半度,各得晨、昏月。 各視每日夜半入陰陽歷交日數,以其下屈伸積,月道与黃道同名者,加之;异名者,減之。各以加、減每日辰昏黃道月度,為入宿定度及分。 ○五曰步軌漏術 爻統千五百二十。 象積四百八十。 辰八刻百六十分。 昏、明二刻二百四十分。 各置其气消息衰,依定气所有日,每以陟降率陟減、降加其分,滿百從衰,各得每日消息定衰。其距二分前后各一气之外,陟、降不等,皆以三日為限。雨水初日,降七十八;初限,日損十二;次限,日損八;次限,日損三;次限,日損二;次限,日損后。清明初日,陟一;初限,日益一;次限,日益二;次限,日益三;次限,日益八;末限,日益十九。處暑初日,降九十九;初限,日損十九;次限,日損八;次限,日損三;次限,日損二;末限,日損一。寒露初日,陟一;初限,日益一;次限,日益二;次限,日益三;次限,日益八;末限,日益十二。各置初日陟降率,依限次損益之,為每日率。乃遞以陟減、降加气初消息衰,各得每日定衰。 南方戴日之下,正中無晷。自戴日之北一度,乃初數千三百七十九。自此起差,每度增一,終于二十五度,計增二十六分。又每度增二,終于四十度。又每度增六,終于四十四度,增六十八。又每度增二,終于五十度。又每度增七,終于五十五度。又每度增十九,終于六十度,增百六十。又每度增三十三,終于六十五度。又每度增三十六,終于七十度。又每度增三十九,終于七十二度,增二百六十。又度增四百四十。又度增千六十。又度增千八百六十。又度增二千八百四十。又度增四千。又度增五千三百四十。各為每度差。因累其差,以遞加初數,滿百為分,分十為寸,各為每度晷差。又累其晷差,得戴日之北每度晷數。 各置其气去极度,以极去戴日度五十六及分八十二半減之,得戴日之北度數。各以其消息定衰所直度之晷差,滿百為分,分十為寸,得每日晷差。乃遞以息減、消加其气初晷數,得每日中晷常數。 以其日處在气定小余,爻統減之,余為中后分。不足減,反相減,為中前分。以其晷差乘之,如通法而一,為變差。以加、減中晷常數,冬至后,中前以差減,中后以差加;夏至后,中前以差加,中后以差減。冬至一日,有減無加;夏至一日,有加無減。得每日中晷定數。 又置消息定衰,滿象積為刻,不滿為分。各遞以息減、消加其气初夜半漏,得每日夜半漏定數。其全刻,以九千一百二十乘之,十九乘刻分從之,如三百而一,為晨初余數。 各倍夜半漏,為夜刻。以減百刻,余為晝刻。減晝五刻以加夜,即晝為見刻,夜為沒刻。半沒刻加半辰,起子初算外,得日出辰刻。以見刻加而命之,得日入。置夜刻,五而一,得每更差刻。又五除之,得每籌差刻。以昏刻加日入辰刻,得甲夜初刻。又以更籌差加之,得五夜更籌所當辰。其夜半定漏,亦名晨初夜刻。 又置消息定衰,滿百為度,不滿為分。各遞以息減、消加气初去极度,各得每日去极定數。 又置消息定衰,以万二千三百八十六乘之,如万六千二百七十七而一,為度差。差滿百為度。各遞以息加、消減其气初距中度,得每日距中度定數。倍之,以減周天,為距子度。 置其日赤道日度,加距中度,得昏中星。倍距子度,以加昏中星,得曉中星。命昏中星為甲夜中星,加每更差度,得五夜中星。 凡九服所在,每气初日中晷常數不齊。使每气去极度數相減,各為其气消息定數。因測其地二至日晷,測一至可矣,不必兼要冬夏。于其戴日之北每度晷數中,較取長短同者,以為其地戴日北度數及分。每气各以消息定數加減之,因冬至后者,每气以減。因夏至后者,每气以加。得每气戴日北度數。各因所直度分之晷數,為其地每定气初日中晷常數。其測晷有在表南者,亦据其晷尺寸長短与戴日北每度晷數同者,因取其所直之度,去戴日北度數。反之,為去戴日南度。然后以消息定數加減之。 二至各于其地下水漏以定當處晝夜刻數。乃相減,為冬、夏至差刻。半之,以加、減二至晝夜刻數,為定春、秋分初日晝夜刻數。乃置每气消息定數。以當處差刻數乘之,如二至去极差度四十七分,八十而一,所得依分前、后加、減初日晝夜漏刻,各得余定气初日晝夜漏刻。 置每日消息定衰,亦以差刻乘之,差度而一,所得以息減、消加其气初漏刻,得次日。其求距中度及昏明中星日出入,皆依陽城法求之。仍以差刻乘之,差度而一,為今有之數。若置其地春、秋定日中晷常數与陽城每日晷數,較其同者,因其日夜半漏亦為其地定春、秋分初日夜半漏。求余定气初日,亦以消息定數依分前、后加、減刻分,春分后以減,秋分后以加。滿象積為刻。求次日,亦以消息定衰,依陽城術求之。此術究理,大体合通。然高山平川,視日不等。較其日晷,長短乃同。考其水漏,多少殊別。以茲參課,前術為審。 ------------------ 國學网站獨家推出 |
后一頁 前一頁 回目錄 |
|